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Abstract 

Where does coherence reside? In current treatments of discourse coherence, coherence is understood as a 
property of a text or discourse, attributable on the basis of relations that hold between its proposition-
denoting units. In this paper, we offer an alternative (but compatible) cognitively-based view of coherence, 
which locates coherence in the agent’s mental representation of the content of the discourse, and in the 
processes whereby this representation is generated. On this view, coherence reflects the presence of 
connections between the concepts which are activated in the course of processing. These conceptual 
interelations are not necessarily (or typically) propositional. In the paper, we lay out this notion of concept-
level coherence, and illustrate it with an analysis of nominal bridging. 
 
 

1. What is coherence a property of? 

Within linguistics, coherence is taken to be a property of a discourse, a linguistic object consisting 

of a series of connected utterances. The two main contenders for a theory of discourse coherence 

are SDRT (Segmented Discourse Representation Theory: Asher & Lascarides 2003 i.a.), and the 

coherence relations theory of Kehler (2002, 2012), which itself draws on prior work by Hobbs 

(1979, 1990) . The central notion in both SDRT and in Kehler’s work is that of a coherence 

relation, a relation which holds between units of discourse (typically, interpreted clauses) and 

characterizes how the units are related to each other. In addition, SDRT offers a characterization 

of discourse structure. Structure arises from the relations built between elementary discourse units, 

creating complex discourse units. SDRT posits a central structural constraint, the Right Frontier 

Constraint, which limits the way in which a new discourse unit can connect to the ongoing 

discourse, given its rhetorical structure. In SDRT, a discourse is coherent just in case a structure 

built of these relations can be constructed.  

An alternative, not mutually exclusive, understanding of coherence locates this feature not in 

the linguistic material, or even in an abstract representation of content, but in the mental 

representations or world model that the hearer constructs as they process and comprehend extended 

linguistic input. On this view, a hearer judges a discourse to be coherent when the mental 
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representation that is triggered by the linguistic input is coherent (in a sense to be clarified in the 

course of this paper). Coherence of a discourse is, on this view, based only indirectly on surface 

features of the discourse itself, inasmuch as those features lead to coherent mental representations. 

Certainly, actual judgments of discourse coherence may reflect properties of both linguistic form 

and mental representation; ordinary judgments of coherence are undoubtedly sensitive to features 

of the discourse itself, including ordering, appropriate use of signals of anaphoricity and of explicit 

markers of interclausal connections (words like because and so), and so on. In this paper, however, 

we focus on developing an understanding of the role of the hearer’s internal representations in 

creating coherence. Our goal is to add to the linguistic literature on coherence a perspective that 

so far is absent. 

We start from a view of knowledge representation in which concepts are the central building 

block. Concepts are representations of our knowledge and beliefs about kinds of things and events, 

including the myriad relations between them. We propose that coherence of mental representations 

involves integration of the concept-based representations generated during comprehension. We 

provide a more specific account in section 2, but begin here with a preliminary sketch of the overall 

picture. 

In modeling reasoning with concepts, it is important to distinguish full conceptual 

representations (held in long term memory) from instantiations of concepts, where the latter are 

elements in working memory that represent particular instances of a concept, and that are actively 

used in a mental process – such as language interpretation. For example, there is a difference 

between one’s concept of DOG, and one’s representation of Fido. We make the simple assumption 

that one aspect of language processing involves the introduction into working memory of 

instantiations of the concepts which the speaker invokes in their utterances. For example, if a 

speaker says “I have a dog,” then the hearer will (amongst other processes) instantiate their concept 

DOG in working memory in order to represent the specific dog under discussion.  

When a concept is initially instantiated, many of its features will remain indeterminate. When 

the speaker says “I have a dog,” the hearer will instantiate the concept DOG, but cannot fix values 

for any basic features such as size, breed, color and so on. Now suppose that the speaker continues: 

“It’s a dachshund.” The speaker is now able to assign a value to one of these features, elaborating 

the instantiation that constitutes their current representation of the discourse content. In our model, 



3 
 

this is how the second utterance coheres with the first: by virtue of the fact that it can be used to 

elaborate the instantiation “launched” by the first.  

Now suppose that the speaker’s next utterance is: “It’s a greyhound.” At this point the hearer 

is likely to be confused, because a dog can’t simultaneously be a dachshund and a greyhound. At 

least informally, we would be inclined to say that the sequence of utterances is no longer coherent 

(unless the new utterance is construed as a correction). In our approach, this judgment of 

incoherence is a direct reflection of the hearer’s world knowledge. Instantiations are constrained 

by the structure of concepts in long term memory, which directly represent world knowledge about 

those concepts. For most people, the DOG concept allows only one value for the “breed” variable 

(with “mixed” as an option). We assume that hearing the speaker say of their own dog, “It’s a 

dachshund” leads the hearer to assign a very high probability to the value “dachshund” for the 

“breed” variable in their current instantiation of DOG. Hence when the speaker appears to try to 

attribute a different value to the variable, the instantiation “crashes” -- it cannot be updated to 

reflect the new information.  

In this essay, we develop an account of this type of coherence, which we call concept-level 

coherence. Concept-level coherence contrasts with theories of (what we will call) proposition-

level coherence that consider coherence only as a relation between (the representations of) clausal 

contents. The general picture is this: Part of the process of language interpretation is the 

construction of a complex instantiation involving multiple concepts; this instantiation represents 

(possibly subparts of) the content of what the speaker says. Once an instantiation is in place, the 

hearer will use new information provided, as far as possible, to elaborate the existing instantiation. 

The more straightforwardly information can be integrated in this way, the more coherent the 

discourse. When interpretation requires the hearer to utilize weak or complex interconnections 

between concepts, or to modify their existing conceptual structures in order to create new 

connections, the discourse is judged less coherent. 

In what follows, we first give a more detailed explanation of concept-level coherence (Section 

2), and then illustrate it with a case study of nominal bridging (Section 3). The idea that bridging 

is a coherence-driven phenomenon is developed in Asher & Lascarides 1998. Their treatment, 

though, assumes that the coherence relations in question are the proposition-level coherence 

relations of SDRT. Here, we offer a view of bridging as driven by instantiation construction and 
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conceptual coherence. We conclude in Section 4 with a more general discussion of concept-level 

coherence. 

 

2. An Account of Concept-level Coherence 

There is clear consensus that coherence is not a purely linguistic feature of a discourse, but 

depends also on the hearer’s world knowledge, which determines the inferences that they deem 

obligatory, permissible, or impermissible. As Asher and Lascarides 1998 observe, modeling 

reasoning with world knowledge is a significant challenge. To address this challenge, we adopt a 

well-established computational model of knowledge and reasoning in which concepts are 

represented as probabilistic graphical models. Other computational theories of concepts and 

knowledge representation could be used instead; our arguments and observations about concept-

level coherence are not dependent on this particular computational model (though the details do 

matter for, e.g., the particular account of bridging that we provide in Section 3.2). The key is that 

the cognitive model of reasoning with world knowledge should provide (1) the right kinds of 

structures for identifying relations between entities invoked in a discourse, and thus for the kind 

of inference required for building coherence at the conceptual level; and (2) a cognitively plausible 

account of this inference. Many different cognitive architectures other than the one we employ 

here include these two components (though we find this architecture particularly useful and 

compelling). 

We understand concept-level coherence as something that depends on the hearer’s ability to 

integrate the discourse content, and subsequent inferences, into instantiations (tokens) of relevant 

concepts (types). Concept-level coherence is thus a graded phenomenon; discourses can be more-

or-less coherent, not simply coherent or incoherent. (We return to this point in Section 4.) A full 

account of concept-level coherence thus requires us to provide a model of concepts and of their 

instantiations. The cognitive architecture we favor uses probabilistic graphical models to encode 

semantic content (Danks 2007; Goodman et al. 2015; Gopnik et al. 2004; Griffiths & Tenenbaum 

2005; Oppenheimer, Tenenbaum, & Krynski 2013; Rehder 2003a, 2003b; Rehder & Hastie 2004; 

see also the many references in Danks 2014), as it has been shown to have significant explanatory 

power in several non-linguistic domains. More specifically, we understand concept-level 

coherence as involving conceptsboth type and tokenthat are represented as probabilistic 
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graphical models. The same mathematical and computational framework is used for both the type- 

and token-level content; the difference lies in what operations can be performed on the 

representations. To avoid confusion between type- and token-level representations, we will use 

SMALL CAPS to represent the type-level content, and boldface to represent the token-level 

instantiations of that type-level semantic knowledge. We return to concept-level coherence shortly, 

but first explain some relevant aspects of this cognitive architecture. 

The framework of probabilistic graphical models has emerged from statistics, mathematics, 

and computer science as a powerful way to represent information-bearing relations, whether 

causal, taxonomic, information-theoretic, or other. These representations are particularly well-

suited to capture much of our conceptual knowledge. A significant part of our understanding of 

BIRD, for example, is knowledge of which factors are relevant for whether something is a bird, as 

well as the internal relevance relations between those factors. Moreover, this representational 

framework is unifying, in the sense that the (mathematical) forms of many standard theories of 

conceptsexemplar, prototype, causal modelcan be represented in the language of probabilistic 

graphical models (Danks 2014).  

At a high level, a probabilistic graphical model consists of two components: (i) a directed 

(usually acyclic) graphnodes and (possibly directed) edges between those nodesover the 

relevant features or dimensions; and (ii) a joint probability distribution (or density) over those 

same factors. The graph component represents the qualitative relevance relationships, and the 

distribution/density represents the quantitative relevance relationships. We bind these components 

together using two assumptions that ensure that the probabilistic graphical model is internally 

coherent.1  

As a concrete example, consider the case of a causal probabilistic graphical model (i.e., one in 

which the edges of the graph correspond to direct causal links) about student behaviors: Studying 

→ Knowledge → Test performance. We have a corresponding quantitative probability distribution, 

P(Studying, Knowledge, Test performance), which can be expressed as a product (determined by 

the binding assumptions) of conditional probabilities: P(Studying)P(Knowledge | Studying)P(Test 

performance | Knowledge). This full causal graphical model is a compact representation of a 

                                                      
1The two assumptions are Markov and Minimality/Simplicity/Faithfulness. In this paper, we can set aside the precise 
details of those assumptions. 
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complex, noisy, indeterministic causal structure that can support inferences (“This student 

performed well; how much do they likely know?”); practical reasoning (“If I want to get a good 

grade, how much should I study?”); and much more.  

In general, we can identify (many) concepts with particular graphical models, and all of the 

standard inferential operations using concepts map onto probabilistic updating involving those 

models. For example, feature inference (e.g., “this is a dog; does it have a tail?”) corresponds to 

inference of the value of a variable in a particular graph. Categorization (e.g., “is this thing a dog 

or a cat?”) corresponds to inference about which graph (one per concept) is most likely to be the 

correct one for this thing. And so forth for other inferences, as well as concept learning or 

acquisition.  

Throughout this discussion, we have referred to ‘features’ as components of both concepts and 

probabilistic graphical models. For example, part of the concept DOG is the feature “barks?” that 

can take multiple values; in the probabilistic graphical model corresponding to DOG and its 

instantiations, we therefore have a node (in the graph) and variable (in the probability distribution) 

labeled “barks?” Importantly, these features can themselves be concepts with their own structure; 

that is, the graphical model nodes can themselves be graphical models that are “encapsulated” in 

a mathematically precise way so that operations on the larger concept can be independent of the 

internal structure of each node. We will typically talk about features as primitives, but we do so 

only provisionally: if necessary, one can use information contained in the concept corresponding 

to the feature; mathematically, we can “open up” a node to use the graphical model to which it 

corresponds.2  

Concepts stand in various relationships to one another. For example, DOG is a (taxonomic) sub-

type of ANIMAL, and so we know that any feature of ANIMAL is also a feature of DOG, though 

perhaps represented only implicitly. There are various complexities around these inter-conceptual 

relationships; for example, apparent taxonomies might not be strict (Sloman 1998), and the 

seemingly same concept can appear in multiple types of relationships (Medin et al., 1997). 

Nonetheless, any framework for representing concepts must allow for these types of relationships. 

In the case of probabilistic graphical models, this challenge is readily met: since nodes are 

                                                      
2 There is obviously a potential infinite regress lurking here. There are various ways to either block or embrace that 
potential regress, each with its own philosophical and psychological advantages and disadvantages. The regress 
challenge is not, however, relevant for our understanding of coherence. 
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themselves concepts, we can represent these inter-conceptual relationships as distinctive types of 

edges in a larger probabilistic graphical model. (See Rubin, Zeigenfuze, & Steyvers 2011 or Danks 

2014 for two different ways to model these relations.) 

We now return to concept-level coherence. Given this cognitive architecture, we model 

comprehension as inference and updating over token-level instantiations of concepts, informed by 

the type-level information in the concepts themselves. During a discourse, an individual has a set 

of concept instantiations (probabilistic graphical models) encoded in working memory. These 

instantiations initially encode only the type-level information (as a probabilistic graphical model), 

and then update feature values as information is acquired. When I hear about my friend’s new dog, 

I have an instantiation dog of the concept DOG that encodes epistemic uncertainty about the 

features of this dog. As I learn more about this dog (e.g., it has three legs), the probability 

distributions in the instantiation change, while leaving intact the conceptual knowledge 

represented in DOG. 

When the hearer encounters a term,3 she must incorporate its content into her evolving 

instantiation. Concept-level coherence reflects her ability to integrate new information into 

existing instantiations without introducing a large number of new instantiations or significantly 

overriding previous content (though changes to previous inferences are permitted for dynamic 

variables). Importantly, the probability of the new information is not particularly important for 

concept-level coherence. A discourse such as “I have a dog. She has three legs. Her fur is dyed 

pink.” is concept-level coherent, even if the resulting representation is a priori quite improbable. 

In contrast, a discourse such as “I have a dog. I have a car.” is not particularly concept-level 

coherent, even though it describes a much more probable world. The problem with the latter case 

is that the hearer cannot incorporate the information in the second sentence into a single integrated 

representation, at least not without making a number of additional inferences and introducing a 

number of new instantiations. The hearer is, on our account, continually updating—through 

additions and inferences—an integrated world model consisting of concept instantiations, and 

concept-level coherence tracks the complexity and “effort” of maintaining that integrated 

representation.  

                                                      
3 We assume the existence of a process by which hearers connect sound sequences to their corresponding concepts. 
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Of course, many more details need to be provided about this high-level account. In particular, 

we need to say what guides the integration of new information into an existing representation. We 

turn now to the particular case of bridging to focus on this question, and also to illustrate in more 

concrete detail how concept-level coherence is understood to operate within this cognitive 

architecture.  

3. Bridging: a case study 

3.1. Introduction to bridging 

A central theme of both SDRT and Kehler’s coherence theory is that the expectation (or 

requirement) that all discourse units can be connected by some coherence relation partly 

determines the interpretations of the units themselves. To illustrate: A coherent interpretation of 

example (1) below requires coreference between she and Samara; given what we know about the 

transfer of pain, the second clause can be an explanation of the first, as signaled by the presence 

of because, only if the subjects of the two clauses corefer. 

(1) Samara is in pain because she stubbed her toe. 

Inferered relations between the referents of NPs (Noun Phrases) is not restricted to overtly 

anaphoric NPs like pronouns. It has long been observed (beginning with Clark 1975) that full NPs 

are often understood as anaphorically dependent on a prior, non-coreferential NP, resulting in the 

interpreter inferring some unstated relation between the referents of the NPs.4 Consider the cases 

in (2): 

(2) Jane looked into one of the rooms.  
a. The ceiling was very high and  
b. a large window looked out onto the bay. 

The subject NPs in (2)a-b. are interpreted as related to the room that Jane looked into, specifically 

as parts of that room. However, as Clark also observed, bridges can be much more complex than 

part-of relations and are highly varied in type. Consider the examples in (3)-(5): 

(3) I’m taking my phone back to the store. The company has issued a recall.  
(4) I like knitted scarves, but the wool has to not be itchy. 

                                                      
4 As Clark noted, bridging relations can also involve events. Here, we focus on cases involving entities introduced 
by NPs, although in principle the same account is extendable to the event case. See section 4 for some further 
discussion.. 
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(5) I went to the museum last week. I heard the admission was half-off.  

As noted above, Asher & Lascarides 1998 propose an account of bridging in terms of 

proposition-level coherence requirements, arguing that bridged interpretations of NPs arise in 

order to facilitate the construction of a propositional coherence relation between segments. Asher 

& Lascarides also observe that world knowledge constrains the construction of bridged 

interpretations, expressing this in the constraint that “Bridges are plausible”, where plausibility 

reflects “common sense reasoning with world knowledge” (p.97). Indeed, the role of world 

knowledge in bridging inferences is widely recognized. Clark 1975 notes that bridging inferences 

“though conveyed by language and a necessary part of the intended message, draw on knowledge 

of natural objects and events that goes beyond one’s knowledge of language itself” (p.412, reprint). 

For Prince 1992, bridged NPs invoke “Inferrable” entities, where what can be inferred depends on 

“the hearer's beliefs and reasoning ability.” So undoubtedly, a coherence based model of bridging 

must explain this role for world knowledge.5 

In SDRT, world knowledge is represented in a set of axioms distinct from the coherence-

generating rules; while the two knowledge bases interact, they are independent. In contrast, in the 

concept-driven approach, world knowledge (as embodied in concepts) is what drives the 

construction of coherent interpretations. Concept-level coherence emerges from world knowledge, 

rather than being an independent system, as we illustrated with the dachshund example in Section 

1. 

In what follows, we will offer some arguments that proposition-level coherence is not adequate 

as a fully general account of bridging, regardless of one’s views about our notion of concept-level 

coherence. We then briefly discuss the role of definiteness in bridging before turning to the 

development of our own account. 

3.1.1. Bridging and Propositional Coherence 

Asher & Lascarides 1998 (see also Hobbs 1979) argue that bridging is a consequence of, and 

subserves, the construction of coherent discourse structure, and in particular the construction of 

plausible coherence relations between segments. In many cases (but not universally), bridging will 

indeed support propositional coherence, as in (6): 

                                                      
5 See also Bos et al. 1995 and Irmer 2009 for attempts to incorporate aspects of semantic knowledge into an account 
of bridging within a dynamic framework. 
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(6) My car isn’t drivable. The windshield is cracked.  

If the windshield is construed as the windshield of the speaker’s car, then the second sentence 

can be inferred to stand in an Explanation relation to the first. If the windshield in question were 

any other windshield, it would be hard to identify any coherence relation that holds between the 

two sentences. 

But discourse coherence alone does not seem to provide enough constraints to explain 

interpretative preferences. For instance, consider the following pair of examples: 

(7) I need to fix this old chair. A/the leg is broken. There’s no end of things to do. 
(8) I need to fix this old chair. A/the leg is broken on that table. There’s no end of things to 

do. 

(7) strongly invites a bridged reading of leg (whether definite or indefinite) to the chair. Yet 

there is a plausible and coherent interpretation in which the speaker is referring in (7) to a broken 

leg of a different item as part of a list of tasks, as shown by (8). If discourse coherence were the 

only constraint to satisfy, then for (7), both the bridged interpretation (triggering an Elaboration 

relation) and non-bridged interpretation (triggering a Parallel relation) should be equally 

accessible.6  A natural suggestion is that interpreters prefer interpretations that do not require 

positing new, unmentioned, entities, which suggests that proposition-level coherence is not the 

sole driver of bridging phenomena. This suggestion follows directly from the account we give 

below.  

A further observation is that a bridging trigger and its anchor may occur within a single 

Elementary Discourse Unit (or clause). Consider the bridged readings of examples (9) and (10)  

below. 

(9) The school commissioned a teacher to write a report on the issue. 
(10) The hospital presented an award to a doctor for excellence in research. 

Considerations of discourse coherence do not apply to the interpretation of the NPs a teacher/a 

doctor, again showing that there must be some additional component to the story about coherence. 

                                                      
6 Asher and Lascarides 1998 do posit partial preference orders on Rhetorical Relations (pp.98-99), but mention only 
a preference for Explanation over Background. The empirical motivation for this ordering is unclear. 
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We suggest that what is missing from Asher & Lascarides’ account is a consideration of 

relations that hold between (conceptual representations of) the entities under discussion. The 

account we offer identifies the role played in bridging by hearers’ knowledge of the relations 

between schools and teachers, hospitals and doctors, or chairs and legs. Certainly, coherence at 

higher levels of the world model matters as well; interpreters are not only constructing 

instantiations of entities, but also of events, and these event instantiations must also hold together 

in a way that is consistent with the world knowledge that the speaker has about event-relations. 

But in many cases, these entity-level relations suffice to explain bridging, and as noted can explain 

cases that lie outside the realm of application of proposition-level theories. 

3.1.2.   Bridging and Definiteness 

A different approach to bridging actually does not significantly appeal to coherence at all. The 

arguably mainstream view found in the literature (see e.g. Clark 1975, Kehler 2015, Roberts 2003) 

is that definiteness plays the central role in triggering bridging: the familiarity implication carried 

by the definite leads the hearer to search for a way to treat an entity newly introduced into the 

discourse as “familiar,” which can be accomplished by taking it to be related to something 

previously mentioned. But definiteness is not, in fact, required for bridging. As several researchers 

have noted (Gundel et al. 1993, Asher and Lascarides 1998, Kehler 2015), indefinites also give 

rise to bridged interpretations, as we illustrated above in (2)b., (7), (9) and (10). While there are 

interactions between definiteness and bridging, which for reasons of space we cannot discuss here, 

the robustness of indefinite bridging argues in favor of a basic mechanism for bridging that is 

indifferent to definiteness. This is one feature of our proposed account, to which we now turn. 

3.2 Concept-level coherence: The case of bridging 

We first show how “basic” bridging phenomena are treated in our model, and then turn to more 

complex cases. In the interests of readability, we provide a relatively informal presentation. 

However, all of the ideas can be specified precisely in the cognitive architecture outlined in Section 

2, or in any other suitable computational cognitive model of concepts.  

We begin with example (11): 

(11) My car isn’t drivable. A/the fuse is blown. 
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In (11), fuse (definite or indefinite) is readily understood as a fuse in the speaker’s car. Here is how 

we model this bridged interpretation in our framework. 

Mention of the speaker’s car induces the construction of an instantiation car of the concept 

CAR, including salient or relevant features of cars and their various inter-relationships (in the 

hearer’s concept). A simplified representation of the simplest possible instantiation created from 

the first sentence in (26) is shown in Figure 1. 

 

 

Figure 1: Simplest possible instantiation 

Typically, however, the speaker will instantiate other relevant or salient features, depending 

on a range of factors (De Groot 1983; Neely 1977, 2012). Different speakers may instantiate 

different features on first hearing some word, and a given speaker may instantiate different features 

on different occasions. One possible richer instantiation is shown in Figure 2, where we include 

cartoon probability distributions to indicate variables/features whose values are not precisely 

known. For example, “gas level” would have a distribution over values corresponding to the state 

of the tank (full, half-full, etc.). The feature value that is known from the initial sentence in (11) 

that the car is not drivableis encoded in the instantiation as a variable value, rather than a 

distribution. 

 
Figure 2: Example initial instantiation 

After the hearer responds to the initial sentence of (11) by creating the instantiation in Figure 

2, she processes the second sentence. The occurrence of the new NP a/the fuse is an instruction to 

the hearer that an instantiation of FUSE is needed for continued interpretation. In our toy example, 
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an instantiation of FUSE is already present. The hearer simply utilizes this, and updates the relevant 

variable value as shown in Figure 3.7 

 
Figure 3: Example final instantiation 

The hearer now has a single integrated representation of the content of the two-sentence 

sequence, where the blown fuse belongs to the car instantiation produced in response to the initial 

sentence. That is, we have a simple case of bridging, as well as a highly concept-level coherent 

sequence.  

Figure 2 represents the assumption that FUSE is relevant or salient enough to be included in the 

initial instantiation of CAR. While possible, this is not very plausible except in specific 

conversational settings. If the interpreter does not instantiate FUSE when car is generated, then she 

might—depending on exactly what is currently salient—construct something like the instantiation 

in Figure 4: 

 
Figure 4: Alternative initial instantiation 

In this case, upon encountering a/the fuse in the second sentence, the hearer is prompted to 

newly instantiate the concept FUSE in working memory. To derive the bridged interpretation, this 

instantiation must, again, be represented as a feature of the current car instantiation, as illustrated 

in Figure 5. Explaining why this occurs is the core piece of our account of bridging; we now turn 

to this explanation. 

                                                      
7 That value update also triggers inferences about other variables in the instantiation, based on the relevance 
relations encoded in the instantiation of car. In this particular case, the only node that might be updated (drivable) 
already has a known value, so no further inference occurs. 
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Figure 5: Alternative final instantiation 

Our account relies on spreading activation, a standard cognitive model for many types of 

search, inference, or prediction (Collins and Loftus 1975). Roughly, the idea is that mental content 

can be “activated,” and that activation can spread out along paths determined by the individual’s 

knowledge, thereby activating other pieces of knowledge. Perhaps the best-known example of 

spreading activation is semantic priming: if participants are shown money, then they (are more 

likely to) disambiguate the sentence “I’m going to the bank” to refer to a financial institution; if 

they are shown water, then they (are more likely to) disambiguate it to the side of a river (see e.g. 

Meyer & Schvaneveldt 1971, Neely 1977, 2012). The spreading activation explanation of semantic 

priming is that the initial images activate the corresponding concepts in participants’ minds, and 

that activation “spreads” to semantically related concepts, but not to unrelated ones. When trying 

to interpret the sentence, people are more likely to utilize the concept that was already activated.  

Importantly, the pathways for activation are provided by existing conceptual structure, both 

relations between concepts and concept-internal relations. Moreover, it is not only the “end point” 

concepts that are activated, but the relations themselves: informally put, showing a person a picture 

of money and uttering the sentence I went to the bank will also increase activation of the semantic 

connections between money and banks.8  

In the probabilistic graphical model approach employed here, graphical edges correspond to 

the paths along which activation spreads, and which are themselves activated in this process. We 

contend that spreading activation can explain how connections between mentioned entities are 

built. These connections are simply the manifestation of spreading activation along connections of 

informational relevance in the hearer’s semantic memory (shaped by some additional factors, such 

as prior salience/activation of a feature). Spreading activation thus yields concept-level coherence: 

                                                      
8 Spreading activation is an intriguing metaphor that can be used to explain a number of different psychological 
findings. That explanatory breadth raises worries that it is only a metaphor, not an actual theory (see Dacey 2016). 
The PGM approach, however, provides computational grounding for this idea. Evidence for neural implementations 
of graphical model representations (e.g., Lee and Mumford 2003; Tervo, Tenenbaum, and Gershman 2016) suggests 
a mechanism by which spreading activation could instantiate features and relationships that are not explicitly stated. 
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it results in representations that attach new information to an existing representation, yielding a 

coherent model. Moreover, a representation generated in this way connects the entities mentioned 

via the strongest connections available, and so the most sensible integration—in this case, the most 

sensible bridge—automatically occurs. When we have mention of both car and fuse, both concepts 

are activated, and the relation between them will have a higher level of activation than, say, the 

relation between fuses and houses. There is no reason, then, for the interpreter to think about fuses 

in the speaker’s house, and to try to relate one of those fuses to the speaker’s car. No special 

principles of coherence are required to explain this; the explanation is provided directly by the 

cognitive mechanisms that yield an integrated (i.e., concept-level coherent) representation. 

The spreading activation model also accounts for how a speaker “chooses” among competing 

potential antecedents for bridging. Consider (12), where the first sentence contains two possible 

antecedents: 

(12) My car is in the repair shop. A/The fuse is blown. 

When the interpreter hears the first of these sentences, the concepts CAR and REPAIR SHOP are both 

activated in the interpreter’s semantic memory, and instantiated in her working memory. Let’s 

assume that, although both cars and repair shops may have fuses, this information is not included 

in either instantiation. What then makes car the more likely antecedent? Our assumption is that for 

most people, FUSE and CAR are more closely related than FUSE and REPAIR SHOP. Consequently, 

when the three concepts, FUSE, CAR and REPAIR SHOP are all activated, activation of a relation 

between the first two will arise more quickly or strongly than activation of a connection between 

FUSE and REPAIR SHOP. And once a way of integrating the new information to the current 

instantiation is available, processing of fuse can stop. 

Further possibilities of the framework are illustrated by (13). 

(13) I have to move out of my apartment. The doorman is harassing me. 

Here, doorman is interpreted as “doorman of the building containing my apartment,” and so 

bridging requires the interpolation of an entity that has not been explicitly mentioned. On our 

model, after processing the first sentence, the interpreter will have activated the concept 

APARTMENT and created an instantiation of it. Activation of APARTMENT plausibly already leads to 

increased activation of APARTMENT BUILDING, although not necessarily reaching the level 
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necessary for instantiation. Now the interpreter hears the doorman. This NP activates the 

DOORMAN concept, and activation from this concept spreads, plausibly further increasing 

activation of APARTMENT BUILDING sufficiently that this concept, and the structure of relevance 

relations that connect it to both DOORMAN and APARTMENT, become instantiated. The interpretation 

of doorman as “doorman of the building that contains my apartment” naturally occurs in the 

process of incorporating the content of the second sentence into the existing instantiation.  

 

4. Concept-level coherence 

The previous section illustrated at a small scale how concept-level coherent interpretations arise, 

and how coherence at this level generates bridged interpretations of NPs. In this section, we take 

a step back and describe the notion of concept-level coherence at a higher level. 

As is evident, concept-level coherence is a strictly cognitive notion of coherence. Moreover, 

unlike the view of coherence offered by SDRT and related frameworks, it is a process-based notion 

rather than an output-based notion. SDRT considers a discourse to be coherent just in case it is 

possible to attach each discourse segment, at the point at which it occurs, to the discourse structure, 

by some coherence relation. We can thus in principle determine the coherence of a discourse by 

observing the final form of the structure assigned to it: if all segments are attached, and all relations 

are allowable, the discourse is coherent. In contrast, concept-level coherence cannot be “read-off” 

the final form of the (complex) instantiation; what will have made the discourse coherent, in this 

sense, is whether instantiation construction was able to proceed utilizing highly activated 

interconnections between mentioned entity-types (and event-types, a point we return to in a 

moment). The more the process requires the creation of novel connections, the less concept-level 

coherent it will be.  

As is clear from the latter point, concept-level coherence also differs from discourse-based 

notions of coherence in that it is a graded phenomenon, rather than a dichotomous one. This 

predicts that (to the extent that judgments of coherence reflect concept-level coherence), these 

judgments should be graded rather than binary. In our account, the degree to which a discourse is 

coherent will depend on the nature and number of interconceptual relations which are utilized in 

constructing the instantiation. 
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Standard notions of coherence have been used not only to capture speaker/hearer intuitions of 

“good” and “bad” sequences, but also to explain how coherence-building results in enrichment of 

the content conveyed by a sequence of utterances. Our discussion of bridging illustrates in detail 

how this arises for NP interpretation. An important difference between our model of how this 

occurs and extant models is that we take enrichment to be a consequence of instantiation 

construction, rather than, as in other approaches, a prerequisite to establishing a coherence relation. 

Consider, for example, (14), from which the hearer learns indirectly that the room in question has 

a chandelier: 

(14) She looked into the room. The chandelier sparkled brightly. 

Clark 1975 posits that this information is “learned” because it must be supposed in order to create 

the relevant bridge. In our account, because the output of interpretation is an integrated world 

model, the result just is an instantiation of a room containing a chandelier. The information is 

inferred from the representation, rather than being presupposed in order to generate the 

representation. 

 Another positive feature of this process-based account of coherence is that it easily 

accounts for the non-monotonicity of coherence-driven inferences (including bridging). Non-

monotonicity is illustrated by the contrast between (15) and (16): 

(15) a. I went to a concert last weekend. It was great. 
b. But the back-up singers had a really weird choreography. 
c. It was quite disturbing. 
 

(16) a. I went to a concert last weekend. It was great. 
b. The orchestra was superb, especially the strings section. 
c.  They played some wonderful Bach. 
d. But the back-up singers had a really weird choreography. 
e. It was quite disturbing. 

Our model easily explains the fact that introducing more information ((16)b,c) undermines the 

coherence of the previously coherent sequence (15). After the initial sentence in each sequence, 

the interpreter instantiates her concept of CONCERT without much further specification, as nothing 

in the context has provided any information about the concert in question. On hearing back-up 

singers in (15)b, she instantiates that concept, and its activation spreads, plausibly activating a sub-

type of CONCERT – the kind with back-up singers – along with other related concepts (perhaps 
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GUITAR, ROCK BAND, etc.). All of the sentences can be easily integrated into a single instantiation. 

In the case of (16), however, the discourse provides further information about the concert: there 

was an orchestra, and they played Bach. This information is incorporated into the instantiation, 

and the resulting inferences lead the hearer to an instantiation in which it is highly probable that 

this is a classical orchestral concert. When the hearer encounters the back-up singers in (16)d., that 

concept becomes activated and instantiated, but now there is no way to integrate the information 

into the existing instantiation (since a rock concert is (almost) never a classical orchestra concert). 

Either the hearer must integrate the concept instantiations anyway (resulting in a very unusual 

concert) or maintain two concert instantiations (resulting in incoherence over the sequence of 

utterances). In either case, sequence (16) exhibits low concept-level coherence. 

In our discussion, we have focused on the (relatively) easy case of concepts for basic entities, 

like cars and windshields. In principle, though, the same understanding of concept-level coherence 

can be extended to much more complex conceptual representations, including concepts for types 

of events and states. Quite plausibly, proposition-level coherence relations, including many of the 

relations posited in SDRT and in Kehler’s work, describe types of relations that can hold at the 

conceptual level. However, in our model we allow relations at all levels of conceptual structure to 

contribute to coherence building, and hence to interact. Entity-level relations may feed the 

construction of higher level event-level relations, as well as vice versa. To illustrate this 

interaction, consider example (17): 

(17) Jane was at the playground. She played on the model firetruck.  

Plausibly, for many hearers, model firetruck is not a common value for the “equipment” variable 

of their PLAYGROUND concept. But undoubtedly, playing events are represented in that concept. 

So as the listener builds a representation of a playing event, it will naturally be located in the 

playground (or in the state of being in a playground) already represented. And as the model 

firetruck is now a location for the playing, then it too must be located in the playground, and the 

content of the second sentence serves as an elaboration of the content of the first. Through this 

interaction of event-concepts and entity-concepts, the hearer arrives at a representation in which 

the model firetruck is in the playground. (And since this information may be used to update the 

concept stored in semantic memory, the hearer has now learned about this new kind of playground 

equipment.) 
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We conclude with a final observation about knowledge representation and discourse 

coherence. As we have noted more than once, all coherence theorists acknowledge the important 

role that world knowledge must play in any theory of coherence. The coherence theories that have 

dominated the literature to date assume (either explicitly or implicitly) that knowledge is 

represented propositionally. It is therefore natural to assume that coherence relations will arise 

through propositional reasoning, and will reflect knowledge of relations between propositions. 

However, if one begins, as we do, from the view that much background knowledge – as well as 

the output of interpretation – is represented by conceptual structures, it is natural to model 

coherence as resulting from integration of these structures. Propositional information can of course 

be retrieved or generated from these structures; but the processes that operate on these structures, 

including processes of learning and inference, do not necessarily involve the manipulation of 

propositions. We believe that conceptual structures are a cognitively more plausible foundation 

for knowledge representation; but the more important point with which we conclude is the deep 

connection between models of knowledge representation and notions of coherence. 
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Appendix: Formal model of instantiation construction with spreading activation 

On the concept side, assume a hearer has semantic knowledge represented as a graphical model 

G (not necessarily connected), where some nodes of G are variables/concepts that themselves have 

graphical model structure. We further assume a relevance function for each variable RX(Y) that 

provides the relevance of variable Y to variable X (i.e., how readily one thinks of Y, given that one 

is thinking of X). The relevance functions need not be symmetric; that is, possibly RX(Y) ≠ RY(X). 

In general, the relevance functions can vary across conversational contexts and hearer goals, but 

we assume that they are stable within a particular discourse. We require that the qualitative 

structure of relevance functions (i.e., the variables for which they are non-zero) be identical with 

the informational structure represented in the graph component of G, but the quantitative features 

need not be the same (e.g., X and Y might be highly correlated but not strongly relevant for one 

another.) There are standard experimental techniques to estimate G (Goodman et al. 2015; Danks 

2014; Rehder 2003b) and the RX functions (Balota and Lorch 1986; De Groot 1983).  

On the language side, we assume a mapping from uttered nouns to concepts (i.e., 

variables/nodes) in G. We also assume that there is a mapping from various linguistic templates to 

operations on representations. For example, the words “A is b” or “A has b” prompt the operation 

of assigning the value b to A (i.e., predication). In general, these mappings are often triggered by 

verbs. Viewed from a slightly different perspective, these operations can be understood as 

realizations of the surface meaning of an utterance. We do not attempt to specify a general mapping 

from particular templates (or verbs) to cognitive operations, as that would involve giving a full 

theory of meaning, rather than our present narrower focus on bridging phenomena. 

Let Act(X, t) be the activation level of node X in G at time t;9 if Act(X, t) exceeds a threshold 

τ, then the concept X is instantiated as node x in W, the working memory of the hearer. The 

instantiation(s) in W thus form a (not necessarily connected) graphical model G. τ will typically 

depend on contextual factors including the hearer’s attentional focus, but we assume that it is 

constant for the duration of a few utterances. We are deliberately agnostic about whether working 

memory is neurally distinct from episodic or other short-term memory structures. We assume only 

that x, the working memory instantiation of X, is independently manipulable from the semantic 

                                                      
9 For convenience, we assume discrete time, though everything in this Appendix could, at cost of increased 
complexity and underdetermination, be rewritten in terms of continuous-time functions. 
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knowledge representation of X. However, we assume that there is a persistent link between x and 

X; colloquially, x is marked as an instance of X. 

When the hearer processes a noun ‘x’, the activation of X (as given by the language function) 

is increased significantly above τ. This step—hearing a word triggers activation of a concept 

sufficient to bring it to awareness—is standard in essentially all theories of language processing 

and comprehension (see, e.g., Devereux, et al. 2013 or Mirman and Magnuson 2009 for possible 

neural accounts of this mapping). There are multiple plausible explanations for exactly how this 

process might work at lower- or higher-levels of description. If there is an x in W, then that 

instantiation receives the hearer’s focus. If there is no such x, then one is instantiated since Act(X, 

t) > τ. If the hearer processes additional words that match a template for a cognitive operation (e.g., 

predication), then that operation is applied to the instantiations in W. These elements suffice for 

generation of the literal meaning of an utterance, but no further inferences. Two types of inferences 

now occur in parallel: spreading activation to connect together elements of G based on relevance 

relations RX, and message-passing to propagate information across G based on informational 

probabilities P. 

There is substantial evidence for spreading activation within semantic memory: concept 

activation (even if below τ) causes related concepts to be partially activated via neural firing 

patterns along connections between relevant content (Fuster 1997; Tulving 1983; Baddeley 2012). 

For example, suppose that X and Y are connected in semantic knowledge. Mathematically, if Act(X, 

t) increases by δ, then Act(Y, t+1) = Act(Y, t) + δRX(Y).10 If Act(Y, t+1) > τ, then y will be 

instantiated in W (or if a y already exists, then it receives attentional focus), and the X – Y 

information connection in G is also instantiated in G (in W). Note that this process implies that 

“sufficiently relevant” features F of a concept X—that is, those with sufficiently high RX(F)—will 

automatically be instantiated when X is instantiated. Similarly, features that were already 

somewhat salient in the discourse (and so had higher prior activation) are more likely to be 

instantiated alongside X. It is possible to have instantiated concepts with no features (e.g., “blank” 

concepts often used in psychological experiments), but this rarely occurs in everyday life. 

Activation iteratively spreads: if X → Y → Z in G, then Act(Z, t+2) = Act(Z, t+1) + δRX(Y)RY(Z), 

potentially moving Act(Z, t+2) above τ. This spreading activation process thus determines the 

                                                      
10 This functional form implies non-trivial constraints on the scales used for Act() and R() functions. 
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elements—nodes and edges—instantiated in G. Over time, content activations will tend towards 

zero; that is, in the absence of other input, Act(X, t+1) < Act(X, t). However, if the hearer maintains 

consistent focus on content X, then activation will continue to spread out through the network. As 

a result, a (potentially quite distal) node S can eventually have Act(S, t+k) > τ for relatively large 

values of k. 

In parallel, cognitive operations can change the (probability distribution over) values of nodes 

in G. That is, the elements of G are not simply connected together via activation, but information 

about the values of those variables then propagates across those connections. Whenever 

distributions change, standard graphical model message-passing algorithms convey information 

throughout elements of G (see Lee and Mumford 2003; Tervo et al. 2016; and references therein 

for neural evidence of message-passing as a distinct operation from spreading activation). For 

example, if x → y and x is changed to the value a, then y will be updated to P(y | x = a).11 These 

value-updates are based on the informational relations in G, not the relevance relations. 

 

 

                                                      
11 Assuming y previously had distribution P(y), which might itself have been the result of previous updating via 
message-passing. 
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